tabel perbandingan Excel vs SQL vs Python dalam menyelesaikan berbagai tugas analisis data umum:
📊 Perbandingan Excel vs SQL vs Python
Task |
Excel |
SQL |
Python (pandas) |
1. Filter rows |
Filter/Slicer, IF , FILTER() |
WHERE clause |
df[df['col'] == value] |
2. Select columns |
Klik kolom / pilih secara manual |
SELECT column1, column2 |
df[['col1', 'col2']] |
3. Sort data |
Sort tool (ascending/descending) |
ORDER BY column ASC/DESC |
df.sort_values('col', ascending=True) |
4. Grouping |
Pivot Table / SUBTOTAL() |
GROUP BY column |
df.groupby('col') |
5. Counting |
COUNT() , Pivot Table |
COUNT(column) |
df['col'].count() or df.groupby(...).count() |
6. Average |
AVERAGE() , Pivot Table |
AVG(column) |
df['col'].mean() |
7. Sum |
SUM() |
SUM(column) |
df['col'].sum() |
8. Remove duplicates |
"Remove Duplicates" tool |
SELECT DISTINCT |
df.drop_duplicates() |
9. Join tables |
VLOOKUP / XLOOKUP / Power Query |
JOIN , LEFT JOIN , INNER JOIN |
pd.merge(df1, df2, on='key', how='left') |
10. Create new columns |
Formula (e.g., =A1+B1 ) |
Use expressions in SELECT |
df['new'] = df['A'] + df['B'] |
11. Handle missing data |
IFERROR() , filter blanks |
Depends on DB engine (IS NULL , COALESCE) |
df.fillna() , df.dropna() |
12. Exporting data |
Save As (CSV, XLSX) |
INTO OUTFILE (MySQL) |
df.to_csv() , df.to_excel() |
13. Visualization |
Charts, PivotChart |
Tidak native, butuh tools tambahan |
matplotlib , seaborn , plotly |
🔍 Kapan pakai yang mana?
Kriteria |
Cocok Pakai Excel |
Cocok Pakai SQL |
Cocok Pakai Python (pandas) |
User non-teknis / cepat |
✅ Ya |
🚫 Kurang cocok |
🚫 Butuh coding |
Data besar (>100K rows) |
🚫 Tidak ideal |
✅ Sangat cocok |
✅ Cocok (dengan RAM cukup) |
Automasi analisis |
🚫 Terbatas |
⚠️ Terbatas |
✅ Sangat cocok |
Advanced analisis/statistik |
🚫 Minim |
🚫 Tidak fokus |
✅ Ya (via SciPy, statsmodels, dll.) |
Machine Learning |
❌ Tidak bisa |
❌ Tidak bisa |
✅ Sangat cocok (scikit-learn, dsb) |
Comments
Post a Comment